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Abstract. Strong, non-homogeneous constraints in full configuration space induce an extra 
potential term in restricted configuration space. This well known fact is interpreted in the 
light of recent results of Jackiw and of Gozzi and Thacker about Berry’s phases and 
Hannay’s angles for coupled systems. The indeterminacy caused by resonances, first pointed 
out by Takens, is partially lifted using an estimate by Grimshaw and Allen. We discuss 
implications for time-reversal symmetry breakdown. Slowly time-varying strong potentials, 
and quantum mechanical counterparts are also discussed briefly. 

Let M ”  be a manifold with a Riemannian metric and denote by T its kinetic energy. 
A strongly constraining potential is a function on total configuration space M of the 
form A W ( x ) ,  x E M, A >> 1 ,  such that W vanishes on a submanifold Sk = M and W > 0 
on M - S. Rubin and Ungar [ 1 1  and Takens [ 2 ]  studied natural mechanical systems 
L = T - V - A W on M. At the limit A + o;, one does not get just the reduced Lagrangian 
Ls = Ts - ys on TS, where the kinetic energy is that of the induced metric of the 
embedding of S into M :  if W is non-uniform, there appears an extra potential, a well 
known fact in the motion of charged particles in magnetic fields [ 3 ] .  

The first purpose of this letter is to show how the results in [ 1,2] can be obtained 
in a quick way, using results by Jackiw [ 4 ]  and Gozzi and Thacker [ 5 ]  about Berry’s 
phase [ 6 ]  and Hannay’s angles [7] for coupled systems. Moreover, we will give a 
simple interpretation for the extra potential term. 

For completeness, we first recall an averaging procedure for slow-fast classical 
systems, following the presentation in [ 8 ] .  In quantum mechanics these ideas go back 
to the Born-Oppenheimer method [4]. The slow dynamics can be approximately 
decoupled from the fast. Besides the averaged potential, the averaged fast motion also 
introduces a ‘magnetic-like’ or ‘gauge’ effect in the slow phase space, through the 
appearance of ‘anomalous commutators’; the classical counterpart was first described 
in [ 51 by a semiclassical ‘dequantisation’ procedure. 

Let H = p 2 / 2 m  + P 2 / 2 +  V(q ,  Q )  where m << 1, so that ( p ,  q )  is the fast motion. 
Assume that for each frozen Q the partial Hamiltonian h = p 2 / 2 m  + V( q, Q )  is com- 
pletely integrable, so there are (partial) action-angle variables ( I ,  8) and canonical 
transformations 

( 1 )  
for which the partial Hamiltonian is h = K ( I ;  Q, m ) .  However, the mapping 
( I ,  8, P, Q )  + ( p ,  q, P, Q )  is no longer canonical: the symplectic form [9] 

pulls back as 
w = d P  A d Q + d I  A d 8 + ( I ,  Q )  d l  A d Q + ( Q, 0 ) d Q  A d 8 + 

p = p ( 4  8; Q, m )  4 = 4 ( 1 , @ ;  0, m )  

d P  A d Q + d p  A dq 

( Qj , Qj ) d Qj A d Q, (2) 
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where (U, U )  = puqv -pvqu denote Lagrange brackets. It follows that the exact equations 
of motion for the full Hamiltonian H = p 2 / 2 +  K ( I ,  Q;  m )  with respect to the pulled- 
back form are 

i = ( e ,  Q ) P  

Q = P  P=-K,+(Q,  Q ) P + ( Q ,  

Q = P  p = - K ,  +(Q, Q ) P  (4) 

e = K /  + ( Q, I) P 
(3)  

The terms (0, e )  in the symplectic form drop out under averaging with respect to 
the angle variables. Thus the averaged equations for the slow motion are 

where (0, Q )  is a ‘magnetic-like force’, since it exerts no work. The reduced Hamil- 
tonian for the slow motion is H = p 2 / 2 + K ( Q ;  I, m )  with I, the actions of the fast 
motions, acting as a parameter. The averaged, reduced symplectic form is 

( w ) = d p ~ d Q + C ( Q i ,  Qj>dQi ~ d Q j *  ( 5 )  
In this approximation, given a solution curve (P( t) ,  Q( t ) )  of the decoupled slow 

subsystem, the motion of the fast variables can be recovered from the partial canonical 
transformation making I = constant and 

O ( t ) = s , + j “ I ,  Q ( t ) ) d t + j ‘ ( Q , I ) P ( t ) d r .  ( 6 )  

The second term is a set of ‘dynamic’ phases, while the third, a lower-order 
correction, is a set of ‘geometric phases’, that is, Hannay’s angles for the slow-fast 
system. 

Consider now a strongly constrained system H = T + (  V+A W ) .  Choose a local 
chart for M with ‘adapted coordinates’ y = (0, q ) ,  where Q E R k  parametrises S and 
q E R P ( k + p  = n) parametrises a tubular neighbourhood of S in M. Let (P ,  p) be the 
momenta obtained under Legendre transformation of y = (0, q) via T, so that the 
kinetic energy becomes 

(7) 
We may assume that ‘pC(Q,O)P=O, which means that the q-fibres leave S 

orthogonally. Let us freeze the slow coordinate Q. Collecting the more important 
contributions for the motion of the q subsystems, we get a quadratic partial Hamiltonian 

where W”) is the Hessian of W relative to q at (Q, 0). We even observe that, by the 
Morse lemma with parameters, we may assume W = W‘*’. For each fixed Q this is a 
linear oscillator, so by elementary means one finds a (partial) canonical transformation 
p = p ( Z , O ; Q , A ) ,  q = q ( Z , O ; Q , A )  suchthat 

T = f ‘ P A ( y ) P + f  ‘ p B ( y ) p  + ‘pC(y)P.  

h = f ‘pB( Q ) p  +;A ‘q W‘”( Q)q  (8) 

h = K ( I , Q , A ) = C f i w i I l  (9) 
where wi = wi( Q )  are the frequencies of the linear system ( B ,  W‘”), assumed for the 
moment to be distinct. Denoting Ji = 6 Ii,  by our previous discussion we obtain the 
limiting system on S given by 

Hs = ;Ts + ( ys +E J , W i ) .  (10) 

Thus one gets a simple interpretation for the extra potential: the constants Ji are 
the adiabatic invariants of this slow-fast system, and the wi are the frequencies of the 
transverse oscillations, suitably normalised. 
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Although this derivation may be lacking in mathematical rigour compared with the 
detailed works [ l ,  21, we believe it gives some good physical insights. For instance, 
Benettin et a1 [ 101, using Nekhoroshev’s perturbation theory, showed that the energy 
for transverse motion separates from the energy of the constrained system, for exponen- 
tially large times, at least in the homogeneous case. This result is consistent with the 
current understanding of the time validity of adiabatic invariants. 

We also observe that since the terms (Q,  Q) average out, there are no magnetic 
terms in the symplectic form (or equivalently, by a ‘minimal-coupling’ transformation, 
in the Hamiltonian, taking the standard symplectic form in the slow phase space). 
This is true because, when dealing with a family of linear anisorropic oscillators, the 
partial canonical transformations p = p (  Z, 8 ;  Q, A ), q = q( Z, 8; Q, A ) are given in terms 
of cosines and sines, respectively. In the Lagrange brackets, only products of sines 
with cosines appear. This implies (Q,  Q) = 0. For the same reason, (Q, I )  = 0 so here 
the geometric term in ( 6 )  vanishes. There are no classical adiabatic angles for the 
transverse motion; there can, however, still be interesting topological effects, about 
which we will comment at the end of this letter. 

We can add yet another twist to the problem by considering strong, slowly time- 
dependent, constraining potentials A W(x,  E t ) ,  where now there are two parameters 
A >> 1, E<< 1. Here W ( . ,  T )  vanishes on a slowly time-varying submanifold S ( T ) C  M 
and W ( . ,  T )  > 0 on M - S ( T ) ,  with T = Et .  Assume that all S ( T )  are modelled on the 
same ‘abstract’ manifold 9’. Consider a parametrisation x = x( Q, q, T )  E M in terms of 
local ‘adapted coordinates’ y = (Q,  q )  in Rk x R P  ( k  + p  = n) such that x (  Q, 0, T )  

parametrises S ( T ) .  As before, we may assume, without loss of generality, that the 
fibres xq4 are orthogonal to S ( T )  at q = 0. In these y coordinates, the kinetic energy 
of the time-dependent Lagrangian L(x, x, ~ f )  = T - V(x,  e t )  -A W ( x ,  E t )  is 

T ( y ,  j ,  E t )  = f ‘ jGj  + E ‘ f , j  + ; E *  ‘f2 ( 1 1 )  

where G(y,  T )  = ( x y ,  x , )  is n x n symmetric positive definite, fl(y, T )  = ( x y ,  x , )  is n x 1 
and f2(y, T )  = (x , ,  x , )  is a scalar. The Legendre transformation 

P y  = G3 + E f l  

H = $pyG-’py  + V(y ,  T )  + A W ( y ,  T )  - ~p,G-’f, + O( E ’ ) .  

(12) 

(13) 

yields the Hamiltonian 

For fixed A and E << 1 one can consider V +  A W as a single ‘moderate’ potential 
which we denote again by V. In many examples, this time-dependent V(x,  T )  becomes 
time independent when written in the y coordinates, that is V ( x ,  T )  = V ( y ) .  This 
happens, for instance, when there is a Lie group of isometries acting on M (e.g. slowly 
rotating systems) for which the potential is equiuariant. In this case, it is easy to see 
that the O ( E )  perturbing term pyG-’g  (which is the source of Berry’s QM-phase or 
Hannay’s classical adiabatic angles) is equal to the momentum J ( p y )  (an element of 
the dual Lie algebra) applied to the infinitesimal generator of the motion [8]. Another 
interpretation, in terms of the notion of ‘Cartan connections’, is given in Marsden et 
a1 [ 113.  These approaches are intended to unify the treatment of many known examples, 
such as the ball in the hoop, the Foucault pendulum, isotropic oscillators on space 
curves, and the rotating elliptical billiard [ 8, 121. 

If one makes A =a, assuming that W ( y )  is time independent, and satisfies the 
homogeneity conditions, then the Hamiltonian (13) reduces to 

(14) Hred = SPQGAPQ + V (  Q )  + HI 



L524 Letter to the Editor 

where HI = - E ~ ~ G , L ~ , , , ~ ,  fproj = (xQ, x , ) ~  is an O ( E )  term. For instance, when one 
deals with a submanifold S moving via rigid motions inside M, the last term becomes 

H'(p,, x) = -pS proj,(R,)*X X = g - ' d g / d t  g=g(Et )  X=O(E)  ( 1 5 )  

where R, is the mapping g e g s  from the Lie group into M. This is the setting of [8] 
and [ 113 .  

We call attention to the simultaneous effect of the two quantities h and E when W 
is non-homogeneous. Physically, the system has three timescales: a 'fast' for the 
transverse motion, a 'normal' for the Q-motion, and a 'slow' due to the slow variation 
with respect to E?. Averaging with respect to the fast motion, then the reduced 
Hamiltonian (14) acquires an extra term, and is now both space and t ime dependent, 

H red = 1  ~ P Q G ~ : ~ ( Q ,  E ~ ) P Q +  V(Q, E t ) + C  'Vi((?, E t ) J i + H ' .  (16) 

It was stressed by Takens that the averaging procedure breaks down at points s E S 
where there are resonances in transversal motion. At those points the extra potential 
becomes indefinite! This is, in fashionable language, a source of 'chaos'. We now 
present some indications, based on the relatively unknown but beautiful work by 
Grimshaw and Allen [ 131, that perhaps this indeterminacy could be (at least partially) 
lifted. 

These authors deal with general quadratic Hamiltonians, with slowly time-indepen- 
dent coefficients, such that each frozen system has purely imaginary eigenvalues. For 
our purposes, it is sufficient to consider systems of the form (8), where here the matrices 
B = B ( Q )  and W = W ( Q )  are time dependent, through the yet  unknown motion 
Q = Q ( t ) .  Actually, one can pay attention just to the two degrees of freedom corre- 
sponding to the normal modes, say i = 1 ,  2 ,  whose frequencies wi come near to a 
collision. We recall that for symmetric matrices, eigenvalue collision is a codimension- 
two phenomenon, and here there is (for the time being) just one parameter, the time. 

The sum of the actions J1 + J2 is still an adiabatic invariant, but a sizeable amount 
of action can be transferred between these resonant modes. The situation is well 
illustrated by the following model problem [ 141: 

(17) 

for f. The frequencies w 1  3 w2 and angle 6 from the smaller frequency mode to 
the q1 axis are given by 

w:,2 = 1 f [( E t ) *  + 4p*]1'2 (18) 

It follows that the eigendirections suffer a rotation of almost 7r /2 ,  after the resonance 
process. This same feature carries over to the general case, for which the frequency 
behaviour is depicted in figure 1. 

Grimshaw and Allen defined a coupling parameter 0 s k d CO, r = exp( - 7 r k / 2 ) ,  by 

H = f ( P : + p : )  +;[(I + E h : +  ( 1  - 4 q :  -4pq,q*l 

tan 4 = ( 1 / 2 p ) [ ~ t + ( ( ~ t ) * + 4 p * ) " ~ ]  

k = ( 2 p p ) 2 / & I s 1  -%I (19) 

(in the example p = 1 SI = -S2 = f). 
The exchange of action between the modes is estimated by [13] 
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U Z E t  

Figure 1. Generic near resonance in linear time-dependent Hamiltonians. 

The indeterminacy term L vanishes if one of the initial actions is zero, or if k = 0, 
k =CO. If p is fixed and E + 0, then k = CO, r = 0 ,  so that Jf = J';" and J :  = J F .  In 
practice, if k >  1.72, less than 1/100 of actions is transferred. However, the eigendirec- 
tions interchange, so one observes a striking physical behaviour. If on the other hand, 
E is fixed and p + 0, then k = 0, r = 1, so Jf = J :  and J :  = J';". The actions completely 
interchange, but this is compensated by the geometric interchange of eigenmodes. 

The results of Grimshaw and Allen's can partially lift Takens chaos. Suppose that 
a trajectory Q = Q( t )  in restricted configuration space passes closest to a resonance at 
t = 0. This distance is proportional to the parameter p in figure 1, where p = 0 
corresponds to exact resonance. The square root fi of the strength of the transverse 
potential is inversely proportional to K ,  while the speed 101 at r = 0 is directly propor- 
tional to it. 

This trajectory Q( t )  solves a time-dependent Hamiltonian given by (lo),  Hs = 
iTs( 0, 0 )  + ( ys( Q )  + X Ji( t )  wi( Q ) ) ,  where all but two of the Ji (say J ,  , J2)  are constant. 
On the other hand, the variations of J ,  , J2 are determined by a linear time-dependent 
system whose coefficients depend on the unknown Q. So, these equations are intrinsi- 
cally coupled. 

Nevertheless, in a first attack on the problem, it is reasonable to assume that the 
exchange between JI and J2 takes place instantaneously at Q(O), as p + 0 and A +CO, 

keeping d(0) and the coupling parameter r fixed. The rationale is as follows: the 
natural timescale, from the point of view of the transverse oscillators, is the 'fast time' 
U = fi t. From [ 13, section 31 it follows that the action exchange takes place in a time 
interval of order l / A 1 ' 4 .  

Fixing (J';", J F ) ,  and taking into account that the indeterminacy is due to the term 
L in (20), one finds that through (Q(O), O(0)) there emanates a one-parameter pencil 
of trajectories! The boundaries of this pencil are found by solving (10) for t 3 0 with 
values of J equal to J : ,  J i  according to (20), taking L = *2[J';"JFr( 1 - r)]1'2.  

What is the origin of this non-uniqueness? Going back to Grimshaw and Allen's 
paper, one sees that the exact value of L depends on an angle-variable initial condition, 
which is usually disregarded in the averaging method. The phase difference between 
the modes w ,  and w 2 ,  irrelevant for ( lo) ,  now has great influence. Its removal must 
be paid for in terms of non-deterministic behaviour. In a certain sense, this provides 
a mechanism for breaking down the time-reversal symmetry within the framework of 
classical mechanics. 

Some final remarks. 
(i)  If Q has one degree of freedom, the exact resonances are non-generic. But 

even so, if we allow time dependence as in (16), collisions of two frequencies are 



L526 Letter to the Editor 

CIL,, I 

t CO 

Figure 2. A mechanism for non-deterministic behaviour of solutions and time-reversal 
symmetry breaking within classical mechanics. 

generically unavoidable. If Q has high enough degrees of freedom, then collisions (or 
near collisions) of three or more frequencies become unavoidable. So far, this latter 
situation has not yet been studied [2]. 

(ii) If there are no exact resonances, then the normal bundle of the embedding 
S c M is trivialisable. So the topological invariants of restricted configuration space 
S can force the existence of frequency collisions. 

(iii) The topological effect we alluded to earlier is a classical counterpart of Berry's 
diabolicity. Assume that a trajectory in configuration space makes a loop around an 
'umbilic point' (a point such that two frequencies are equal). The loop does not need 
to be a periodic trajectory; that is, we do not impose that initial and final velocities 
coincide. If the loop is close enough to the umbilic, action exchanges do take place 
[ 151, but here we are interested in the adiabatic limit, so the actions remain invariant. 
Suppose we were able to compare two transverse oscillators, one with the parameters 
frozen at the initial value, the other corresponding to the slowly varying parameters. 
Then, at the end of the loop, each of the two modes involved will be in opposition of 
phase. 

(iv) In statistical mechanics, time-reversal symmetry of Boltzmann equations is 
broken by a suitable averaging process. In a sense, the mechanism depicted in figure 
2 is a classical mechanics analogue. 

(v) The subtle effects of degeneracy vis U vis adiabaticity in quantum mechanics 
have been recently tackled by Gingold [16]. We think that it would be interesting to 
work out the quantum counterparts of [15,16] (see also [17,18]).  

I wish to thank Professor Alan Weinstein for having called attention to Takens' paper 
in this office, back in 1982. I even recall him drawing something like figure 2 on the 
blackboard. This work was supported in part by CNPq/Brazil grant 30.0007-83. 
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